Electromagnetic and physical properties of sea ice formed in the presence of wave action

نویسندگان

  • Robert G. Onstott
  • Sivaprasad Gogineni
  • Anthony J. Gow
  • Thomas C. Grenfell
  • Kenneth C. Jezek
  • Donald K. Perovich
  • Calvin T. Swift
چکیده

Estimating the magnitude of brine flux to the upper ocean requires an ability to assess the dynamics of the formation of sea ice in a region. Brine storage and rate of expulsion is determined by the environmental conditions under which the sea ice forms. In this paper, the physical and electromagnetic properties of sea ice, formed under wave-agitated conditions, are studied and compared with results obtained from ice formed under quiescent conditions. Wave agitation is known to have a profound effect on the air–ice interface and internal ice structure. A variety of sensors, both active and passive, optical and microwave, were used to perform this characterization. Measured electromagnetic parameters included radar backscatter, microwave emission, and spectral albedo in the visible and infrared. Measured physical properties included ice structure, brine and temperature distribution, profiles of the vertical height of the air–ice interface, and ice formation processes. Results showed that emission, backscatter, and albedo all take different signature paths during the transformation from saline water to young sea ice and that the paths depend on sea surface state during ice formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Polarimetric signatures of sea ice 1. Theoretical model

Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for polarimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are related...

متن کامل

Polarimetric signatures of sea ice Part I: Theoretical model

Physical, structural, and electromagnetic properties and interrelating processes in sea ice are used to develop a composite model for po-larimetric backscattering signatures of sea ice. Physical properties of sea ice constituents such as ice, brine, air, and salt are presented in terms of their effects on electromagnetic wave interactions. Sea ice structure and geometry of scatterers are relate...

متن کامل

A Method for Ice-Thickness Detecting and Ice-Section Imaging by Using FMCW-SAR Algorithm

Sea ice plays an important role in global climate. Many researches focus on the measurement of the sea ice thickness. In this paper, we present a method for the ice-detecting combining frequencymodulated continuous-wave (FMCW) technology and synthetic aperture radar (SAR) technology. It can provide a good resolution both in the range dimension and the azimuth one. Then a simulation is conducted...

متن کامل

Modeling of Optical Beam Spread in Sea Ice

The two objectives of this year’s work were (1) to finish analyzing the BSF data taken during the main field experiment of the Electromagnetic Properties of Sea Ice (EMPOSI) Accelerated Research Initiative at Barrow, Alaska in 1994, and (2) to investigate the extent to which it is possible to model light propagation in sea beginning with the ice physical properties. In particular, I wished to s...

متن کامل

SYNTHESIS AND STRUCTURAL, MAGNETIC, AND ELECTROMAGNETIC CHARACTERIZATION OF COBALT FERRITE / REDUCED GRAPHENE OXIDE COMPOSITE

In this research, cobalt ferrite powders (CoFe2O4) and cobalt ferrite/reduced graphene oxide composite (CoFe2O4/RGO) were synthesized by the co-precipitation method. The phase structure, morphology, magnetic properties, and microwave absorption properties of the produced samples were investigated through various techniques. X-ray diffraction test indicated the successful formation of pure CoFe2...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Geoscience and Remote Sensing

دوره 36  شماره 

صفحات  -

تاریخ انتشار 1998